
v

N98-12390

Supporting Multiple Domains in a Single Reuse Repository

David Eichmann"

SoRReL Group
Dept. of Statistics and Computer Science

West Virginia University
Morgantown, WV 26506

eichmann@cs.wvu.wvnet.edu

Abstract: Domain analysistypically results in the constructionof a domain-
specificrepository. Sucha repositoryimposesartificial boundarieson the shax-
ing of similar assets between related domains. A lattico-baseA approach to re-
pository modeling can preserve a reusea"sdomain specific view of the reposi-
tory, while avoiding replication of commonly used assets and supporting a more
general perspective on domain interrelationships.

Keywords: domain analysis, software reuse, faeeted classification, type lattices,
record subtyping, repository views

1. Introduction

There is an emerging consensus on the importance of domain analysis in the success of a

software reuse program [9]. We find it particularly significant that the construction of domain-

specific repositories is a natural consequence of domain--specific analysis of various software

system assets. These domain-specific repositories provide yet another guise for the NIH (not-

invented--here) syndrome, and hence fail to capitalize on possible reuse scenarios that lie in re-

lated, but distinct domains.

We propose here that repositories should not be domain-specific, but rather that a particular

view of the repository should be domain-specific, and that this view should be user--adjustable.

We use our lattice-based approach to classification [4] to demonstrate how this can be accom-

plished. Secdon 2 briefly reviews issues in domain analysis, faceted classification, and the con-

cepts of typing and lattices. Seedon 3 reviews our lattice--based repository model, followed by a

demonstration of domain--specific support in seedon 4. The paper doses with a discussion and

suggestions for future work with section 5.

* This work was supported in part by NASA undercooperative agreement NCC--9--16, and in p_ by
MountainNet, Inc.

.. 4

2. BaCkground

Our work draws its motivation equally from the areas of domain analysis and type theory.

Recent advances in the application of_ lattices to database models and knowledge represen-

tation provide an excellent formal framework for repository structure.

2.1. Domain Analysis

"Domain analysis is the process of identifying and organizing knowledge

about some class of problems D the problem domain D to support the descrip-

tionand solutionof those problcrns."[I]

m

llg

w

w

The interest in domain analysis reflects its importance to the effective population and use of

reuse repositories. There are substantial arguments in favor of the reasoned coverage of a par-

ticular software system problem domain, rather than a grab--bag approach to populating the re-

pository. Reusers frustrated with gaps in the coverage of the repository frequently fail to return

to the repository. We refer the reader to the excellent collection edited by Prieto--Diaz and

Arango for a deeper presentation of domain analysis [9].

However, we do have reservationsconcerning theexclusivenessof domain-specific reposi-

tories.Particularclassesof assetsare bestconsidereddomain-independent _ or perhaps more

aptly_ usefulina broad classof domains; themost obvious assetclassof thisnatureisthatof

thesimple abstractdata types.These "trans--domain"assetseffectivelyform theirown domain,

which numerous, more restrictivedomains draw upon forrepresentationalinfrastructure.Do-

main analystsaretherebypresenteda dilemma, toreplicatethe trans--domainassetsintothe do-

main-specificrepositories(alongwith theinherentmaintenance headaches),or tofactorthe

trans-,domainassetsintotheirown domain _ resultingin a multi-domain environment. The

work presented here attempts to resolve this dilemma.

2.2. Faceted Classification

Faceted classification begins by using domain analysis to identify and examine a collection

of work perceived to be related [12]. This process relies on a library notion known as literary

-2-

J

J

1it

11

m

II

m
Z

w

lid

J

n

g

===.

w

warrant, where a classifier collects a representative sample of rifles which are to be classified,

and extracts descriptive terms to serve as a grouping mechanism for the rifles. From this process,

the classifier not only derives temas for grouping but also identifies a vocabulary that serves as

values within the groups. A facet then is the encapsulation of a set of related concepts, ex-

pressed in the vocabulary of the domain.

w

L_

L _

r --

From the software perspective, the groupings or facets become a taxonomy for the software.

Using Literary Warrant, Prieto-Diaz and Freeman identified six facets that can be used as a tax-

onomy [10]: Function, Object, Medium, System Type, Functional Area and Setting. Every

software component is classified by assigning a value for each facet for that component. For ex-

ample, a software component in a Relational Database Management System that parses expres-

sions might be classified with the tuple

(parse, expression, stack, interpreter, DBMS,).

Thus, the Function facet value for this component is "parse", the Object facet value is "expres-

sion", etc. Note that no value has been assigned for the Setting facet as this software component

does not seem to have an appropriate value for the Setting facet. The taxonomy formed is "flat"

in that there is no nesting of facets within facets, as is the case with other popular classification

schemes (e.g., the Dewey decimal system, the ACM Computing Reviews system, etc.).

Our principle concept for structuring the repository is a lattice. Lattices handily support in-

stances that are pairwise incomparable (e.g., a tuple characterizing a design document and a

tuple characterizing a conference paper), but that are both comparable to some third instance

(e.g., the more general notion of a document, which is an upper bound in lattice terminology).

The remainder of this section provides a brief review of lattice theory, section 3 presents the ap-

plication of lattices to faceted classification.

-3-

vii

2,4. Subtypes andinheri_nce "

The object classes in an object--oriented system are organized into a partial ordering. Object m

classes (subtypes) inherit a_Sfites _cl-fiaethods _m the_ _st0rs (super_ypes)in the order-

ing. Single inheritance schemes restrict a given object class to at most one immediate ancestor z

1IF
in the partial ordering. Multiple inheritance schemes allow a given object class to have any

number of immediate ancestors in the partial ordering. Cardelli formalized some of the seman-

tics of multiple inheritance in [2].
m

Conformance allows one type instance to be treated as if it were an instance of another type w

[8]. Any type a conforms to any type b if the subtype relation holds between a and b, i.e., a -_ b.
w

In a Hmited sense, this is what happens with inheritance, but conformance is more general. In-

heritance requires that this treatment only be allowed when moving up the type hierarchy or lat-

tice. Inheritance uses a partial ordering of types (by subtype), plus an implicit def'mition of exis-

tence dependencies between a given type and its ancestors. Conformance can hold for arbitrary w

types, independent of any type ordering scheme. Such a notion is clearly superior to inheritance

based upon hierarchies or lattices for type--related query languages, where intermediate results

(derived from existing types, but not part of the database schema) need to be manipulated. W

Our classification scheme requires the notion of subtype to be defined between instances of

g
facet set types and between instances of record types. Let a be a facet set type containing m fac-

et instances and b be a facet set type containing n instances. Then a is a subtype of b, written a -_
J

b, if for each b_ in b (1 < i < n), b_ is also in a. Similarly, let R -- {i, : t,, ..., i, : t.} be a record type

containing n components and S - {i, : t;, i. : t'.} be a record type containing m components, 1 _<

m <n (we ean reorder component entries as necessary). Then R is a subtype of S, writtenR _- S, if _

for each ij, (1 <j < m), ti -_ t_ W

3. Lattic_aS_ FaeefedCrask-ifi_a_i_- _ : _m:

Inheritance-based systems are, in some sense, navigational. A user querying an object--ori-

ented database must be aware of the inheritance structure of that specific database, just as a user

-4-

= =

j

W

w

".,..,.-

querying a network database must be aware of database structure. Because of their non-naviga-

tional characteristics, conformance--based models promise to gain prominence over inheritance-

based models, just as relational models have over network models. Our approach uses confor-

mance to identify components using their position in a type lattice. One particularly useful con-

sequence of this choice is the ability to dynamically evolve the repository structure, adding new

vertices to the lattice as analysts examine new domains.

3.1, The T_v0e Lattice

Figure 1 shows the general structure of the reuse type lattice. At the top is T, the special

universal type. Any value conforms to the univ_ type. At the bottom is .L, the void type.

These two special types ensure that any two types in the lattice have both an upper bound and a

lower bound. Between the universal and void types appear the upper and lower bounds for the

two type constructors facet and tuple. Facet0 characteMzes the notion of the empty facet type; it

contains no values, but is still a facet. Likewise, Facet characterizes the notion of the set of all

possible facet values. The dotted line between them indicates that an arbitrary number of types

may appear here in the lattice. For example, figure 2 shows the sublattice for facet sets for the

examples in section 2.2.

The tuple sublattice has a similar structure. At the top is the empty mple type { }, character-

izing a tuple with no facets. At the bottom is mple, the mple type with all possible facets.

T

Facet0 {}

w

Face_le

1

Figure 1. The reuse type lattice

-5-

W

Traditional retrieval 0findividual facet values relies upon maximaJconjunction of boolean

terms for retrieval of matches on all facets and maximal disjunction of boolean terms for

matches on any facet of an expression. In order to fit the notion of facet into the type lattice, we

look at sets of facets. A set of facets corresponds to a conjunction on all of the facets comprising

the set. Each set occupies a unique position in the type lattice. We handle disjunction by allow-

hag a given component to occupy multiple lattice p0sitions. Matching occurs on any of the posi-

tions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation

within the type system to a particular facet value. Values are bound to some semantic concept in

the problem domain.

The subset relation is our partial order for facets. The least value of this portion of the lattice

is the set of all facet values from all facets in the problem domain, denoted by the distinguished

name Facet. The greatest value of this portion of the lattice is the empty set, denoted by the dis-

tinguished name Facet0. The union operator generates the greatest lower bound. The intersec-

tion operator generates the least upper bound.

l

mi

W

II

J

W

g

J

II

Faceto

Functiono Objecto
!

!

!

!

I

!

!

|

|

Mediumo SystemTypeo FunctionalAreao Settingo

Fun_ystcmT_ FunctionalArea Setting

Facet

Figure 2. A Sublattice of Facet Sets

-6-

u

w

II

m

D

J

I!

m

II

w

3.2, The Inference Rules

A formal mechanism for the specification of the query semantics is clearly of use. In this

case, type inference directly aplSiies to the problem. We begin with a brief remark concerning

notation. In the inference rules that follow, the symbol A represents an existing set of assump-

tions. A always contains the type information generated by the database schema which imple-

ments the repository. It is occasionally necessary to extend the set of assumptions with some

additional information. A. x denotes the set of assumptions extended with the fact x. A }-x

states that given a set of assumptions A, x can be inferred. Inferences above the horizontal line

act as premises for the conclusions, the inferences below the horizontal line. An expression is

well-typed if a type for the expression can be deduced using the available inference rules, other-

wise it is ill-typed. We give in this section only a minimal set inference rules to provide a flavor

of the complete set, which may be found in [3, 4].

3.2.1. Domain Interval Subtyping

Typically, a subtype is "smaller" than its supertype, for example, the range of employee ages

is a subtype of the integers. Here the reverse is true, a subtype is a larger collection of values

than its supertype - some entry containing at least all the facet values of interest is thereby an

instance of a subtype of the query instance's type.

A domain interval is a type qualification that explicidy denotes the valid subrange(s) for a

base type. Rule (1) extends subtyping to domain intervals, where each subinterval in the sub-

A F t(ml...m)-_ t(rat'...nt3

J" t(m,..._)_ t(n_'...r_3 (1)

A i- t(mt...nl rm ..,r_) -< t(ml"...nl', m[..,nl')

type is a subtype of some interval in the supertype. Assume that t is a base type ordered by "_

(the ordering may be arbitrary). A domain that is (inclusively) delimited by two values, a and b,

is denoted t0...b>. Intervals made up of more than a single continuous value range are denoted by

a set of ranges, for example, t(,...b.=...d.,) denotes the interval that includes the subinterval a

through b inclusive, the subinterval c through d inclusive, and the singleton value e. The single-

-7-

w

ton range e is equivalent to e...e. When we use such notation we intend that a < b and c < d, but

not necessarily that b < c or d _ e. An empty pair of brackets, to, denotes an empty interval, i.e.,

one which contains no elements. In our particular application, the base types are finite sets of

enumeration (facet) values.

3.2.2. Tuple Subtyping
_ ; -- - := :

This collection of inference rules explicitly types the tuples that classify components. The

unlabelled record attributes used by Prieto--Diaz in tuples can be ambiguous when a given facet

value is used in more than one domain. Rather than require that facet values be distinct across

facets, we view a tuple r to be of type record, {it : t_..... i," t.}. Type ti for attribute ij must be a

facet type. The empty tuple (i.e., the tuple containing no facets) is of type {}, the tuple type with

no components. The order in which components appear is arbitrary, since attribute name is used

to distinguish facets.

Rule (2) characterizes record subtyping, handling situations where a component of the sub-

A I- 1 <m<n

A I- t'l -_tl
(2)

A b t'ra _ tm

A k {il : t'l , im : t'm in : tn} -_ {il : tl ira : tin}

type is a subtype of the corresponding component in the supertype.

4. Modeling Multiple Domains in a Single Repository

The re_sit0ry model presented in section 3 is well-suited to supporting multiple domains

simultaneously, while allowing for the appearance of domain-specificity where necessary. Our

model furth_ sup_rts the notion of a_mplete life cycle repository, as many of the issues ap-

..... . -: _

plieable for component assets from multiple domains apply equally well to the clx_terization

of life cycle assets.

4.1 • Domain_n_/SiihndRovo_i0rv ,_tm_ur_ -_ _

Consid_-_effecfOf dom_ maal_-_s on--die definition of the _s_fing_tories. If we

assume that each domain analysis is c_ed outin isolation (_ order to focus solely upon the

-8-

m

111

Z

g

m
m

W

m

|

g

g

w

w

L,=i

requirements of that particular domain), it naturally follows that the collection of facets used to

characterize that domain (and the values that make up each of those facets) will also be inde-

pendent. Realistically though, rio domain is totally independent from all others, and there will

be facets (or subsets of facet values) that two related domains will have in common.

A maximal upper bound for a domain is the distinguished vertex in the lattice that contains

exactly those facets used in classifying the domain, but that contains no facet values. A maximal

lower bound for a domain is that distinguished vertex in the lattice that contains exactly those

facets used in classifying the domain, and for each of those facets, the n-tuple contains all values

"used by that facet. All instances in the domain fall somewhere between the maximal lower

bound and the maximal upper bound for that domain. There are three possible relationships be-

twcen domains in the unifiedlattice.

w

First, domains that share one or more complete facets, but differ by at least one facet, have

facetn---tuplesthatare siblingsin the lattice.Their only commonality isthe n-tuplecorrespond-

ing tothe leastupper bound of the two n-tuplesinvolved;i.e.,neitherisa subtype of the other,

but theydo sharea common supertype.By inferencerule(2),thisisthe n--eaplecomprised ex-

actlyof those facctswhich the two domains share.Domain intervalsubtypingdoes not come

into play, since all facet instances contain all values in their respective facets.

w

Next, domains thatsharethe same setof facets,but only partiallysharefacetvaluesforone

or more facets, and differ by at least one facet value in some facet, are likewise siblings in the

lattice.They sharea singlemaximal upper bound, sincethey areclassifiedby the same facets,

and they have a greatestlower bound thatiscomprised of the union of each of the respective

facet value sets.

Finally, domains that share some, but not all, facets, but only partially share facet values for

one or more facets, are likewise siblings in the lattice. Both this and the second relationship be-

-9-

tween domains require inference rule (2), plus the entire set of inference rules for domain inter-

val subtyping.

4.2 Sublattices as Re oository Views

Reusers wishing to focus on a specific domain in our model need only concentrate on the

subiattice defined by the maximal upper and lower bounds for that domain. Restricting queries

to mentioning only those facets present in those n--tuples effectively reduces the repository data

model to a fiat tuple space in the tradition of Prieto-Diaz. The restriction is easily accomplished

by prodding repository views similar in nature to the relational definition of a view.

A repository view is def'med by a pair of n---tuples: the first characterizing the upper extent of

the lattice that the view may reference, and the second characterizing the lower extent of the lat-

dee that the view may reference. By varying the placement of these view extents in the lattice, a

variety of repository structures may be presented to the reuser. The upper extent specifies those

facets which the user query must specify, and the lower extent specifies those facets which the

user query may specify. Defining multiple repository views supports the presentation of arbi-

trary domains in a single composite view.

The most general example of this is an upper extent of { } and a lower extent of tuple opens

the entire repository to the reuser.

An upper extent of the maximal upper bound for a domain and a lower extent of the maximal

lower bound for that same domain restricts the reuser to specifying at most and at least those fac-

ets used in classifying that particular domain, i.e., a fiat tuple space with a slight variation (sets

of facet values may be specified, but need not be).

An upper extent comprised of two empty facets and a lower extent of tuple SuPports the no-
, , _; _i_ _ _ " :_ L_,_-__ _ _ _ "--_ _ :_

don 0famdtiple _inheri-hanee_sll, lJc_ rooted at those two facets and including any vertex that

includes at least those facets.

- 10-

W

J

=--

W

8

g

W

g

m

Q

m

U
.... i

j "-

m

i"

i

w

-; z

m

Specifying a lower extent with a facet containing only a subset of the complete facet restricts

reusers employing that view from accessing any asset not classified using values from that sub-
:

set.

L .

w

u

.4.3 Re.oository Synergy

As mentioned previously, few domains are truly independent from all others. A domain-

specific repository with good coverage of that domain must necessarily duplicate at some level

assets that are very similar to, if not duplicates of, assets found in repositories for closely related

domains. Repositories supporting a collection of related domains avoid this unneeded replica-

tion of assets.

Many of the assets comprising these repositories will be adaptable to a variety of domains

beyond the one for which they were initially designed. This synergy of assets promises a deeper

understanding of the software process, but an understanding more difficult to achieve with the

artificial boundaries of domains impeding access. Presenting a seamless integration of a diverse

universe of assets is critical to the success of software reuse.

w

If the user interface for the reuse system supports the possibility of multiple repository back-.........

ends, each specific to a given domain, it is possible to avoid asset replication. However, this im-

plies cooperation between repository administrators that may not be convenient, or even feasi-

ble. In a mature reuse industry, repositories will be geographically distributed and span work

groups, organizations, and even industries. Here again, seamless integration of multiple reposi-

tories is important, and not readily handed by a flat, static classification structure.

4.4 The RelationsPliD to Life C;ycle P,ssets and Granularity

As we previously mentioned, we arc interested in a complete Kfe cycle repository model, in-

cluding requirements assets, design assets, and so on, as well as the traditional component assets.

Granularity issues are particularly interesting in such a model, as reusers attempt to track par-

ticular concepts through requirements and design and on into maintenance.

-II-

g

Such a data model adds facets particular to a specific life cycle phase, or particular to a spe-

cific level of granularity, just as independent domain analysis adds facets to a particular domain.

In effect, the resulting repository model contains _ dimensions: domain, life cycle phase, and

granularity. The def'mition of facet values and the corresponding set of lattice vertices handles

domains and life cycle phases. Multiple vertex instances handle granularity issues under our

current approach.

5. Conclusions and Future Work

We de.bed here an approach _ing the specificity of domain--specific repositories with

the flexibility of domain-independent repositories. The primary drawback we see in Prieto--

Diaz' approach to classification is the flatness and =___--h°m°geneityof the Classification sQ-uc_u'e. A

general reuse system might have not only reusable components, but also design documents, for-

real specLficadons, and perhaps vendor production hd'ormafion, to name a few possibilities, and

have all of these things for multiple problem domains. Pdeto-EHaz' scheme creates a single

mple space for all entries, resulting in numerous facets, mp]es with many "not/applicable" en-

tries for those facets, and frequent wildcarding in user queries. Our model supports precise char-

acterization of assets, and lattice--based queries may be as restrictive or as broad as necessary to

suit a reuser's needs.

Conceptual closeness is a very appealing concept in our framework, but offers its own col-

lection of difficulties, particularly the establishment of distances for terms in a given domain,

and the resolution of conflicting distances for terms occurring in multiple domains. We are cur-

rently exploring the use of neural networks to support adaptive distances, based upon user esti-

mations of the relevartee of query matches to the intended semantics. An early report on this

work appears in [5].

Relai_ to°_ncepmal closeness is the idea:ofconcep_ighborhoodsaround n--mples.

Conceptual closeness addresses the semantic distance between two facet values, while concep-

tual neighborhoods address the semantic distance between two n--tuples in the lattice. The re-

-12-

W

m

m

ll¢

i

g

g

W

I

I

i

B

Ill

g

I[

11

w

pository model described here is one mechanism for constructing a conceptual neighborhood,

based upon subtype relationships. We plan to consider alternative neighborhood def'mition

mechanisms, including compos{ng distances for n-tuples from the distances for facet values in-

volved in those n-tuples. We are also considering the inclusion of signatures [7] and semantics

[6, 11] into the repository model to improve query effectiveness.

Z Z

n

_=

References

[1] Arango, G. and R. Prieto-Diaz, "Part 1: Introduction and Overview - Domain Analysis

Concepts and Research Directions," Domain Analysis and Software Systems Modeling,

Prieto--Diaz, R. and G. Arango (eds.), IEEE Computer Society, Los Alamitos, CA, 1991,

pages 9-32.

[2] Cardelli, L., "A Semantics of Multiple Inheritance," in Semantics of Data Types (Pro-

ceedings International Symposium Sophia-Antipolos, France, June 1984), Springer-Ver-

I

lag, Lecture Notes in Computer Scienc_,_/o|. 173, pages 51--68.

[3] Eichmann, D., Polymorptu'c Extensions to the Relational Model, Ph.D. dissertation, The

University of Iowa, Iowa City, IA, August 1989. Also available as technical report

89-05.

[4] Eichmann, D. A. and J. Atkins, "Design of a Lattice-Based Faceted Classification Sys-

tem," Second International Conference on Software Engineering and Knowledge Engi-

neering, Skokie, IL, June 21-23, 1990, pages 90-97.

[51 Eichmann, D. A. and K. Srinivas, "Neural Network-Based Retrieval from Reuse Reposi-

tories," CHI'91 Workshop on Pattern Recognition and Neural Networks in Human-Com-

puter Interaction, New Orleans, LA, April 28, 1991.

w

[6] Eichmarm, D. A., "Selecting Reusable Components Using Algebraic Specifications,"

Second International Conference on Algebraic Methodology and Software Technology.

Iowa City, IA, May 22-25, 1991, pages 37-40.

- 13-

[71 Eichmann, D. A., "A Hybrid Approach to Software Repository Retrieval: Blending Fac-

eted Classification and Type Signatures," i'hird International Conference on Software

Engineering and I(howledge Engineering, Skokie, IL, June 27-29, 1991, pages 236-240. m

[8] Horn, C., "Conformance, Generieity, Inheritance and Enhancement," ECOOP'87 - Proc.

European Conference on Object--Oriented Programming, Pads, France, June 15-17,

1987, pages 223--233.

[9] Prieto--Diaz, R. and G. Arango (eds.), Domain Analysis and Software Systems Modeling,

IEEE Computer Society, Los Alamitos, CA, 1991.

[10] Prieto---Diaz, R. and P. Freeman, "Classifying Software for Reusability," IEEE Software,

vol. 4, no. 1, January, 1987, pages 6-16.

[11]

[12]

Steigerwald, R., Luqi, and J. McDoweU, "A CASE Tool for Reusable Software Compo-

nent Storage and Retrieval in Rapid Prototyping," Tidrd International Conference on

Software Engineering and Knowledge Engineering, Skoide, IL, June 27-29, 1991, pages

34-39.

Vickery, B. C., Faceted Classification Schemes, vol. 5, Rutgers Series on Systems for the

Intellectual Organization of Information, S. Artandi (ed.), Rutgers University Press, New

Brunswick, NJ, 1966.

JIm

u

i

II

l
Q

i

w

l

g

• : = = = ?

[] t

I!

- 14-

i

